Kurs maturalny z matematyki (formuła 2022, poziom rozszerzony) Zobacz szczegóły kursu. Kornelia Duda.
Zadania maturalne z matematyki na poziomie rozszerzonym Matematyka, poziom rozszerzony, matura 2018. Liczba zdających: 67 400 (LO: 44 138, technikum: 23 262)
Testy maturalne - matematyka 2015 (poziom rozszerzony) (wyd. 2020) Od roku 2015 maturzyści, oprócz obowiązkowego egzaminu z matematyki na poziomie podstawowym, będą mogli zdawać egzamin maturalny na poziomie rozszerzonym.
POZIOM ROZSZERZONY DATA: 11 maja 2022 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2.
Zadania maturalne na dowodzenie z matematyki Poziom podstawowy i rozszerzony. Niniejszy opracowanie wychodzi naprzeciw oczekiwaniom uczniów i nauczycieli, którzy chcą się przygotować do poprawnego dowodzenia zadań maturalnych, które jakże często występują na egzaminie podstawowym i rozszerzonym. Zbiór składa się z trzech części:
Kurs maturalny z matematyki (formuła 2024, poziom rozszerzony) 📚 Matematyka - planer całoroczny (od września) R 2024 Równania wymierne a zadania
. Lista zadańOdpowiedzi do tej matury możesz sprawdzić również rozwiązując test w dostępnej już aplikacji Matura - testy i zadania, w której jest także, np. odmierzanie czasu, dodawanie do powtórek, zapamiętywanie postępu i wyników czy notatnik :) Dziękujemy developerom z firmy Geeknauts, którzy stworzyli tę aplikację Oblicz współczynnik kierunkowy stycznej do wykresu funkcji , określonej dla każdej liczby rzeczywistej x ≠ 1, poprowadzonej w punkcie tego wykresu. Poniżej wpisz kolejno cyfrę jedności, pierwszą i drugą cyfrę po przecinku skończonego rozwinięcia dziesiętnego otrzymanego wyniku. Zadanie 6. (0–3)W trójkącie ABC kąt BAC jest dwa razy większy od kąta ABC. Wykaż, że prawdziwa jest równość |BC|2 – |AC|2 = |AB| ⋅ |AC|. Udowodnij, że dla dowolnego kątaprawdziwa jest nierówność Zadanie 8. (0–3)Wykaż, że równanie x8 + x2 = 2(x4 + x – 1) ma tylko jedno rozwiązanie rzeczywiste x = 1. Zadanie 9. (0–4)Ze zbioru wszystkich liczb naturalnych ośmiocyfrowych, w których zapisie dziesiętnym występują tylko cyfry ze zbioru {0, 1, 3, 5, 7, 9}, losujemy jedną. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma cyfr wylosowanej liczby jest równa 3. Zadanie 10. (0–4)Dany jest rosnący ciąg geometryczny (a, aq, aq2), którego wszystkie wyrazy i iloraz są liczbami całkowitymi nieparzystymi. Jeśli największy wyraz ciągu zmniejszymy o 4, to otrzymamy ciąg arytmetyczny. Oblicz wyraz aq tego ciągu. Zadanie 11. (0–4)Dany jest nieskończony ciąg okręgów (on) równaniach x2 + y2 = 211–n, n ≥ 1. Niech Pk będzie pierścieniem ograniczonym zewnętrznym okręgiem o2k–1 i wewnętrznym okręgiem o2k. Oblicz sumę pól wszystkich pierścieni Pk, gdzie k ≥ 1. Zadanie 12. (0–5)Trapez prostokątny ABCD o podstawach AB i CD jest opisany na okręgu. Ramię BC ma długość 10, a ramię AD jest wysokością trapezu. Podstawa AB jest 2 razy dłuższa od podstawy CD. Oblicz pole tego trapezu. Zadanie 13. (0–5)Wierzchołki A i B trójkąta prostokątnego ABC leżą na osi Oy układu współrzędnych. Okrąg wpisany w ten trójkąt jest styczny do boków AB, BC i CA w punktach – odpowiednio – P = (0,10), Q = (8,6), R = (9,13). Oblicz współrzędne wierzchołków A, B i C tego trójkąta. Wyznacz wszystkie wartości parametru m, dla których równaniema dwa różne rozwiązania x1, x2 spełniające warunki: x1 ⋅ x2 ≠ 0 oraz Zadanie 15. (0–7)Rozpatrujemy wszystkie możliwe drewniane szkielety o kształcie przedstawionym na rysunku, wykonane z listewek. Każda z tych listewek ma kształt prostopadłościanu o podstawie kwadratu o boku długości x. Wymiary szkieletu zaznaczono na Wyznacz objętość V drewna potrzebnego do budowy szkieletu jako funkcję zmiennej x. b) Wyznacz dziedzinę funkcji V. c) Oblicz tę wartość x, dla której zbudowany szkielet jest możliwie najcięższy, czyli kiedy funkcja V osiąga wartość największą. Oblicz tę największą objętość.
Matematyka Aksjomat Toruń Oszczędzasz 12,95 zł (41% Rabatu) Wysyłka: 1-2 dni robocze+ czas dostawy Opis Niniejszy opracowanie wychodzi naprzeciw oczekiwaniom uczniów i nauczycieli, którzy chcą się przygotować do poprawnego dowodzenia zadań maturalnych, które jakże często występują na egzaminie podstawowym i składa się z trzech części:Ponad 300 przykładowych zadań poświęconych dowodzenie, pogrupowanych w 11 działach zgodnie z podstawą programową na poziomie podstawowym i 100 zadań, które w latach 2010-2020 wystąpiły na wszystkich 400 zadań prezentowanych w ważne jest dowodzenie niech świadczy zapis z podstawy programowej z roku 2018:„Samodzielne przeprowadzanie dowodów przez uczniów rozwija takie umiejętności jak: logiczne myślenie, precyzyjne wyrażanie myśli i zdolność rozwiązywania złożonych pozwala doskonalić umiejętność dobierania trafnych argumentów i konstruowania poprawnych formułowania poprawnych rozumowań i uzasadnień jest ważna również poza matematyką.”Poniższy zbiór mogą wykorzystać nauczyciele na lekcjach matematyki, a uczniowie do samodzielnej do nauki do matury, jak i przygotowania się do konkursów wdzięczni za wszelkie uwagi dotyczące stopnia trudności, jak i z zakresu prezentowanych zadań i ich dowodów. Szczegóły Tytuł Zadania maturalne na dowodzenie z matematyki Poziom podstawowy i rozszerzony Inne propozycje autorów - Masłowski Tomasz, Toruńska Anna Podobne z kategorii - Matematyka Klienci, którzy kupili oglądany produkt kupili także: Darmowa dostawa od 199 zł Rabaty do 45% non stop Ponad 200 tys. produktów Bezpieczne zakupy Informujemy, iż do celów statystycznych, analitycznych, personalizacji reklam i przedstawianych ofert oraz celów związanych z bezpieczeństwem naszego sklepu, aby zapewnić przyjemne wrażenia podczas przeglądania naszego serwis korzystamy z plików cookies. Korzystanie ze strony bez zmiany ustawień przeglądarki lub zastosowania funkcjonalności rezygnacji opisanych w Polityce Prywatności oznacza, że pliki cookies będą zapisywane na urządzeniu, z którego korzystasz. Więcej informacji znajdziesz tutaj: Polityka prywatności. Rozumiem
Liczba zadań: 38. Informator, formuła od 2015. Zadania są z różnych działów. Podane są przykładowe rozwiązania – jedno lub więcej. Uwaga: niektórych zadań nie będzie na maturze 2022 z powodu niezgodności treści z wymaganiami egzaminacyjnymi. Takimi przykładami są zadania: 21, 25, 26, 27, 28, 29, 33, dostępne także w aplikacji Matura - testy i zadania, gdzie mogliśmy wprowadzić dodatkowe funkcje, np: dodawanie do powtórek, zapamiętywanie postępu nauki czy notatnik. Dziękujemy także developerom z firmy Geeknauts, którzy stworzyli tę aplikację
i Matura 2022 matematyka rozszerzona Odpowiedzi, pytania, arkusze CKE. Zadania, arkusze i odpowiedzi CKE matura 2022 matematyka poziom rozszerzony Matura 2022: matematyka, poziom rozszerzony. Maraton matur trwa w najlepsze! Niektórzy abiturienci zaczęli wakacje, a przed innymi kolejne egzaminy. W środę, 11 maja 2022 roku część maturzystów zmierzyła się z matematyką na poziomie rozszerzonym. Punktualnie o godzinie 9:00 maturzyści otrzymali arkusze zadań z pytaniami przygotowanymi przez Centralną Komisję Egzaminacyjną. W tym artykule na opublikujemy arkusz CKE z matury 2022 z matematyki rozszerzonej. Odpowiedzi znajdziecie w naszym artykule poniżej. Matura 2022 matematyka: arkusze CKE, odpowiedzi, pytania, zadania, poziom rozszerzony. W galerii znajdziesz arkusz CKE i odpowiedzi z matematyki. Zadania z matury 2022 rozwiązuje nasz ekspert - Dariusz Kulma. To znany matematyk, uhonorowany tytułem Nauczyciela Roku, który od lat pomaga uczniom w przygotowaniach do matury za pośrednictwem swojej strony internetowej Matura 2022 matematyka rozszerzona Odpowiedzi, pytania, arkusze CKE Jakie zadania były na maturze 2022 z matematyki rozszerzonej? Sprawdźcie arkusz CKE i odpowiedzi naszego eksperta! W galerii poniżej pojawią się arkusze zadań, pytania i odpowiedzi z matury 2022 z matematyki na poziomie rozszerzonym, gdy tylko CKE udostępni arkusze. Zobaczcie arkusz CKE z zeszłorocznej matury 2022 z matematyki i odpowiedzi do zadań, które rozwiązywał nasz ekspert - nauczyciel matematyki, Dariusz Kulma. Zobacz także: Matura 2022: Matematyka rozszerzona. Przecieki, zadania, arkusze CKE. Relacja na żywo Matura 2022 z matematyki, poziom rozszerzony 11 maja 2022. Tu znajdziesz arkusze CKE, pytania i odpowiedzi! Matura 2022: matematyka poziom rozszerzonym. W środę ( o godz. 9:00 część maturzystów przystąpi do matury 2022 z języka angielskiego na poziomie rozszerzonym. Jakie pytania i zadania znajdą się w arkuszach przygotowanych przez Centralną Komisję Egzaminacyjną na maturze 2022 z matematyki? Jakie są odpowiedzi do poszczególnych zadań? Chcesz wiedzieć, czy dobrze odpowiedziałeś na pytania na maturze 2022 z matematyki na poziomie rozszerzonym? W naszym artykule będziecie mogli sprawdzić, jak poszło wam na maturze 2022 z matematyki na poziomie rozszerzonym. Będziemy aktualizować informacje na bieżąco. Czytaj: Matura 2022: matematyka rozszerzona. Twitter żąda przecieków! "Oddam duszę za przecieki z matmy" Zanim pojawią się oficjalne odpowiedzi, te publikowane tutaj są wyłącznie sugerowane - nie ma pewności, że są prawidłowe. Odpowiedzi przygotuje nasz ekspert - Dariusz Kulma. To znany matematyk, uhonorowany tytułem Nauczyciela Roku, który od lat pomaga uczniom w przygotowaniach do matury za pośrednictwem swojej strony internetowej Sonda Czy wierzysz przeciekom maturalnym? Matura dla uchodźców z Ukrainy
Poziom rozszerzony - dodatkowe zadaniaPoniżej zamieściłem playlistę z różnymi zadaniami z mojej strony, które wchodzą w zakres poziomu nawigacja do zadania numer: 5 10 15 20 25 30 35 40 45 50 .W tym nagraniu wideo omawiam metodę rozwiązywania równań trygonometrycznych i pokazuję jak najlepiej rysować wykresy sinusa i nagrania: 25 nierówność \(|2x - 5| - |x + 4| \le 2 - 2x\).\(x\in (-\infty ;-7\rangle \cup \left\langle -1;\frac{11}{3} \right\rangle \)Dana jest funkcja \( f \) określona wzorem \( f(x)=\frac{\vert{x+3}\vert+\vert{x-3}\vert}{x} \) dla każdej liczby rzeczywistej \( x\ne 0 \). Wyznacz zbiór wartości tej funkcji. \((-\infty ;-2\rangle \cup \langle 2;+\infty ) \)Rozwiąż nierówność \(x^4 + x^2 \ge 2x\).\(x\in (-\infty ;0\rangle \cup \langle 1;+\infty )\)Rozwiąż równanie \( \sqrt{3}\cdot \cos x=1+\sin x \) w przedziale \( \langle 0, 2\pi \rangle \) . \(x=\frac{3\pi }{2}\) lub \(x=\frac{\pi }{6}\)Rozwiąż równanie \(\sin x|\cos x|=0,25\), gdzie \(x\in \langle 0; 2\pi \rangle\).\(x=\frac{\pi }{12}\) lub \(x=\frac{5\pi }{12}\) lub \(x=\frac{7\pi }{12}\) lub \(x=\frac{11\pi }{12}\)Rozwiąż równanie \(\cos 2x + \cos x + 1 = 0\) dla \(x\in \langle 0,2\pi \rangle\).\(x=\frac{\pi }{2}\) lub \(x=\frac{3\pi }{2}\) lub \(x=\frac{2\pi }{3}\) lub \(x=\frac{4\pi }{3}\)Rozwiąż równanie \(\cos2x + 2 = 3\cos x\).\(x=\frac{\pi }{3}+2k\pi \) lub \(x=-\frac{\pi }{3}+2k\pi \) lub \(x=2k\pi \) gdzie \(k\in \mathbb{Z} \)Wyznacz wszystkie wartości parametru \(m\), dla których równanie \(x^2 + 2(1 - m)x + m^2 - m = 0\) ma dwa różne rozwiązania rzeczywiste \(x_1\), \(x_2\) spełniające warunek \(x_1 \cdot x_2 \le 6m \le x_1^2 + x_2^2\) .\(m\in \langle 0;\ 3-\sqrt{7} \rangle \)Oblicz wszystkie wartości parametru \(m\), dla których równanie \(x^2 - (m + 2)x + m + 4 = 0\) ma dwa różne pierwiastki rzeczywiste \(x_1\), \(x_2\) takie, że \({x_1}^4 + {x_2}^4 = 4m^3 + 6m^2 - 32m + 12\).\(x=-\sqrt{14}\) lub \(x=\sqrt{14}\)Wyznacz wszystkie wartości parametru \( m \), dla których funkcja kwadratowa \( f(x)=x^2-(2m+2)x+2m+5 \) ma dwa różne pierwiastki \( \ x_1, x_2 \) takie, że suma kwadratów odległości punktów \( A=(x_1, 0)\ \text{i}\ B=(x_2, 0) \) od prostej o równaniu \( x+y+1=0 \) jest równa \( 6 \). \(m=-3\)Wyznacz wszystkie całkowite wartości parametru \( m \), dla których równanie \[ \left (x^3+2x^2+2x+1 \right) \left [ x^2-(2m+1)x+m^2+m \right]=0 \] ma trzy, parami różne, pierwiastki rzeczywiste, takie że jeden z nich jest średnią arytmetyczną dwóch pozostałych.\(m=-3\) lub \(m=0\)Reszta z dzielenia wielomianu \(W(x) = 4x^3 - 5x^2 - 23x + m\) przez dwumian \(x + 1\) jest równa \(20\). Oblicz wartość współczynnika \(m\) oraz pierwiastki tego wielomianu.\(m=6\), \(x=-2\) lub \(x=\frac{1}{4}\) lub \(x=3\)Wykaż, że dla dowolnej wartości parametru \(m\) równanie: \(-x^2+(2m^2+3)x-m^4-1=0\) ma dwa różne pierwiastki liczbowy \((a, b, c)\) jest arytmetyczny i \(a + b + c = 33\), natomiast ciąg \((a - 1, b + 5, c + 19)\) jest geometryczny. Oblicz \(a, b, c\). \(\begin{cases} a=9 \\ b=11 \\ c=13 \end{cases} \) lub \(\begin{cases} a=33 \\ b=11 \\ c=-11 \end{cases} \)Trzy liczby tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy \(8\), to ciąg ten zmieni się w arytmetyczny. Jeżeli zaś do ostatniej liczby nowego ciągu arytmetycznego dodamy \(64\), to tak otrzymany ciąg będzie znów geometryczny. Znajdź te liczby. Uwzględnij wszystkie możliwości.\((4,12,36)\) lub \(\left( \frac{4}{9}, -\frac{20}{9}, \frac{100}{9} \right)\)Liczby \(a, b, c\) tworzą w podanej kolejności ciąg geometryczny. Suma tych liczb jest równa \(93\). Te same liczby, w podanej kolejności są pierwszym, drugim i siódmym wyrazem ciągu arytmetycznego. Oblicz \(a, b\) i \(c\).\(a=3\), \(b=15\), \(c=75\)Wyznacz wzór na \(n\)-ty wyraz ciągu arytmetycznego wiedząc, że suma pierwszych pięciu jego wyrazów jest równa \(10\), a wyrazy trzeci, piąty i trzynasty tworzą w podanej kolejności ciąg geometryczny.\(a_n=2\) lub \(a_n=3n-7\)Trójkąt \( ABC\ \) jest wpisany w okrąg o środku \( S \). Kąty wewnętrzne \( CAB, ABC \) i \( BCA \) tego trójkąta są równe, odpowiednio, \( \alpha , 2\alpha \) i \( 4\alpha \). Wykaż, że trójkąt \( ABC \) jest rozwartokątny, i udowodnij, że miary wypukłych kątów środkowych \( ASB, ASC \) i \( BSC\ \) tworzą w podanej kolejności ciąg arytmetyczny. Ciąg geometryczny \( (a_n) \) ma \( 100 \) wyrazów i są one liczbami dodatnimi. Suma wszystkich wyrazów o numerach nieparzystych jest sto razy większa od sumy wszystkich wyrazów o numerach parzystych oraz \( \log a_1+\log a_2+\log a_3+...+\log a_{100}=100 \). Oblicz \( a_1 \). \(a_1=10^{100}\)Wiedząc, że ciąg \((a_n)\) jest ciągiem arytmetycznym oraz wyraz ogólny ciągu \((b_n)\) określony jest wzorem \(b_n = 5^{a_n}\), wykaż, że ciąg \((b_n)\) jest ciągiem geometrycznym. Wyznacz, w zależności od \(n\), iloczyn \(b_1\cdot b_2\cdot b_3\cdot ...\cdot b_n\), przyjmując, że pierwszy wyraz ciągu \((a_n)\) jest równy \(1\), a jego różnica jest równa \(3\).\(5^{\frac{3n^2-n}{2}}\)Rzucamy cztery razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn liczb oczek otrzymanych we wszystkich czterech rzutach będzie równy \(60\).\(\frac{5}{108}\)Oblicz, ile jest liczb naturalnych sześciocyfrowych, w zapisie których występuje dokładnie trzy razy cyfra \(0\) i dokładnie raz występuje cyfra \(5\).\(1920\)Prosta o równaniu \(3x - 4y - 36 = 0\) przecina okrąg o środku \(S = (3, 12)\) w punktach \(A\) i \(B\). Długość odcinka \(AB\) jest równa \(40\). Wyznacz równanie tego okręgu.\((x-3)^2+(y-12)^2=625\)W układzie współrzędnych rozważmy wszystkie punkty \(P\) postaci: \(P = \left (\frac{1}{2}m + \frac{5}{2}, m \right )\) gdzie \(m\in \langle -1,7 \rangle\). Oblicz najmniejszą i największą wartość \(|PQ|^2\), gdzie \(Q = \left (\frac{55}{2}, 0 \right )\).\(max = 651\frac{1}{4}\), \(min = 511\frac{1}{4}\)Dany jest trójkąt \(ABC\), w którym \(|AC| = 17\) i \(|BC| = 10\). Na boku \(AB\) leży punkt \(D\) taki, że \(|AD|:|DB|=3:4\) oraz \(|DC| = 10\). Oblicz pole trójkąta \(ABC\).\(P=84\)Dany jest trójkąt prostokątny \(ABC\), w którym \(|BC| = 30\), \(|AC| = 40\), \(|AB| = 50\). Punkt \(W\) jest środkiem okręgu wpisanego w ten trójkąt. Okrąg wpisany w trójkąt \(ABC\) jest styczny do boku \(AB\) w punkcie \(M\). Oblicz długość odcinka \(CM\). \(2\sqrt{145}\)Na zewnątrz trójkąta prostokątnego \(ABC\), w którym \(|\sphericalangle ACB| = 90\) oraz \(|AC| = 5\), \(|BC| = 12\) zbudowano kwadrat \(ACDE\) (patrz rysunek). Punkt \(H\) leży na prostej \(AB\) i kąt \(|\sphericalangle EHA| = 90^\circ\). Oblicz pole trójkąta \(HAE\). \(\frac{750}{169}\)Na rysunku przedstawiony jest fragment wykresu funkcji logarytmicznej \(f\) określonej wzorem \(f(x)=\log_2 (x-p)\). a) Podaj wartość \(p\). b) Narysuj wykres funkcji określonej wzorem \(y = |f(x)|\). c) Podaj wszystkie wartości parametru \(m\), dla których równanie \(|f(x)| = m\) ma dwa rozwiązania o przeciwnych \(p=-4\); c) \(m\in (2;+\infty )\)W ostrosłupie \(ABCS\) podstawa \(ABC\) jest trójkątem równobocznym o boku długości \(a\). Krawędź \(AS\) jest prostopadła do płaszczyzny podstawy. Odległość wierzchołka \(A\) od ściany \(BCS\) jest równa \(d\). Wyznacz objętość tego ostrosłupa.\(V=\frac{a^3d}{4\sqrt{3a^2-4d^2}}\)Wyznacz cztery kolejne liczby całkowite takie, że największa z nich jest równa sumie kwadratów trzech pozostałych liczb.\(-1,0,1,2\)Udowodnij, że jeżeli \(a + b \ge 0\), to prawdziwa jest nierówność \(a^3 + b^3 \ge a^2b + ab^2\).Wykaż, że prawdziwa jest nierówność \(\sqrt{2^{50} + 1} + \sqrt{2^{50} - 1} \lt 2^{26}\).Trapez równoramienny \(ABCD\) o podstawach \(AB\) i \(CD\) jest opisany na okręgu o promieniu \(r\). Wykaż, że \(4r^2 = |AB| \cdot |CD|\).Udowodnij, że jeśli: a) \(x, y\) są liczbami rzeczywistymi, to \(x^2 + y^2 \ge 2xy\). b) \(x, y, z\) są liczbami rzeczywistymi takimi, że \(x + y + z = 1\), to \(x^2 + y^2 + z^2 \ge 1/3\). Udowodnij, że dla każdych dwóch liczb rzeczywistych dodatnich \( x, y \) prawdziwa jest nierówność \((x+1)\frac{x}{y}+(y+1)\frac{y}{x}>2 \). Dane są trzy okręgi o środkach \( A, B, C \) i promieniach równych odpowiednio \( r, 2r, 3r \). Każde dwa z tych okręgów są zewnętrznie styczne: pierwszy z drugim w punkcie \( K \), drugi z trzecim w punkcie \( L \) i trzeci z pierwszym w punkcie \( M \). Oblicz stosunek pola trójkąta \( KLM \) do pola trójkąta \( ABC \). \(\frac{1}{5}\)Punkty \( A, B, C, D, E, F \) są kolejnymi wierzchołkami sześciokąta foremnego, przy czym \( A=(0, 2\sqrt{3}),B=(2,0) \), a \( C \) leży na osi \( \ Ox \). Wyznacz równanie stycznej do okręgu opisanego na tym sześciokącie przechodzącej przez wierzchołek \(E \). \(y=-\frac{\sqrt{3}}{3}x+6\sqrt{3}\)Oblicz objętość ostrosłupa trójkątnego \( ABCS \), którego siatkę przedstawiono na rysunku. \(V=15360\)Z urny zawierającej \(10\) kul ponumerowanych kolejnymi liczbami od \(1\) do \(10\) losujemy jednocześnie trzy kule. Oblicz prawdopodobieństwo zdarzenia \( A \) polegającego na tym, że numer jednej z wylosowanych kul jest równy sumie numerów dwóch pozostałych kul. \(P(A)=\frac{1}{6}\)Narysuj wykres funkcji: \[ f(x)=\begin{cases} -2^{x+1}+2,\quad \text{dla } x\le 0\\ -|x-4|+4,\quad \text{dla } x> 0 \end{cases} \] Określ liczbę rozwiązań równania \(|f(x)|=m\) w zależności od parametru \(m\).\(0\) rozwiązań \(\Leftrightarrow m 4\) \(2\) rozwiązań \(\Leftrightarrow m = 0 \lor m = 4\) \(3\) rozwiązań \(\Leftrightarrow m \in \langle 2;4)\) \(4\) rozwiązań \(\Leftrightarrow m \in (0;2)\)O wielomianie \(W(x)=2x^3+ax^2+bx+c\) wiadomo, że liczba \(1\) jest jego pierwiastkiem dwukrotnym oraz że \(W(x)\) jest podzielny przez dwumian \(x + 2\). Oblicz współczynniki \(a, b, c\). Dla obliczonych wartości \(a, b, c\) rozwiąż nierówność \(W(x+1)\lt 0\).\(a=0\), \(b=-6\), \(c=4\); \(x\lt -3\)Liczby \(a\), \(b\), \(k\) są całkowite i \(k\) jest różna od zera. Wykaż, że jeśli liczby \(a+b\) oraz \(a\cdot b\) są podzielne przez \(k\), to liczba \(a^3-b^3\) też jest podzielna przez \(k\).Określ dziedzinę funkcji: \(f(x)=\sqrt{\text{log}_{2}(\text{log}_{\frac{1}{3}}(x+1))}\).\(x\in \left(-1;-\frac{2}{3}\right\rangle \)Okrąg o środku \(A\) i promieniu długości \(r\) jest styczny zewnętrznie do okręgu o środku \(B\) i promieniu długości \(R\) (\(R> r\)). Prosta \(k\) jest styczna jednocześnie do obu okręgów i tworzy z prostą \(AB\) kąt ostry \(\alpha \). Wyznacz \(\sin \alpha \) w zależności od \(r\) i \(R\).\(\sin \alpha =\frac{R-r}{R+r}\)W trójkącie \(ABC\) punkty \(K = (2, 2), L = (-2, 1)\) i \(M = (-1,-1)\) są odpowiednio środkami boków \(AB, BC, AC\). Wyznacz współrzędne wierzchołków trójkąta \(A' B' C'\), który jest obrazem trójkąta \(ABC\) w symetrii środkowej względem początku układu współrzędnych.\(A'=(-3;0)\), \(B'=(-1;-4)\), \(C'=(5;2)\)W trójkącie \(ABC\) kąt przy wierzchołku \(B\) jest ostry, długość promienia okręgu opisanego na tym trójkącie jest równa \(5\) oraz \(|AC|=6, |AB|=10\). Na boku \(BC\) wybrano taki punkt \(K\), że \(|BK|=2\). Oblicz długość odcinka \(AK\).\(|AK|=6\sqrt{2}\)W zielonym pudełku jest 10 monet pięciozłotowych i 5 monet dwuzłotowych, a w białym pudełku są 2 monety pięciozłotowe i 3 monety dwuzłotowe. Z zielonego pudełka losujemy jedną monetę i wrzucamy ją do białego pudełka. Następnie z białego pudełka losujemy jednocześnie 2 monety. Oblicz prawdopodobieństwo, że z białego pudełka wylosujemy w sumie 7 złotych. \(\frac{26}{45}\)W ostrosłupie prawidłowym czworokątnym krawędź podstawy ma długość \(a\). Ostrosłup ten przecięto płaszczyzną przechodzącą przez środki dwóch sąsiednich krawędzi podstawy i wierzchołek ostrosłupa. Płaszczyzna tego przekroju tworzy z płaszczyzną podstawy kąt o mierze \(\alpha\). Oblicz objętość tego ostrosłupa.\(V=\frac{a^3\sqrt{2}\operatorname{tg} \alpha }{12}\)
zadania maturalne matematyka poziom rozszerzony